First-principles electronic structure and relative stability of pyrite and marcasite: Implications for photovoltaic performance

نویسندگان

  • Ruoshi Sun
  • M. K. Y. Chan
  • G. Ceder
چکیده

Despite the many advantages (e.g., suitable band gap, exceptional optical absorptivity, earth abundance) of pyrite as a photovoltaic material, its low open-circuit voltage (OCV) has remained the biggest challenge preventing its use in practical devices. Two of the most widely accepted reasons for the cause of the low OCV are (i) Fermi level pinning due to intrinsic surface states that appear as gap states, and (ii) the presence of the metastable polymorph, marcasite. In this paper, we investigate these claims, via density-functional theory, by examining the electronic structure, bulk, surface, and interfacial energies of pyrite and marcasite. Regardless of whether the Hubbard U correction is applied, the intrinsic {100} surface states are found to be of dz2 character, as expected from ligand field theory. However, they are not gap states but rather located at the conduction-band edge. Thus, ligand field splitting at the symmetry-broken surface cannot be the sole cause of the low OCV. We also investigate epitaxial growth of marcasite on pyrite. Based on the surface, interfacial, and strain energies of pyrite and marcasite, we find from our model that only one layer of epitaxial growth of marcasite is thermodynamically favorable. Within all methods used (LDA, GGA-PBE, GGA-PBE+U , GGA-AM05, GGAAM05+U , HSE06, and -sol), the marcasite band gap is not less than the pyrite band gap, and is even larger than the experimental marcasite gap. Moreover, gap states are not observed at the pyrite-marcasite interface. We conclude that intrinsic surface states or the presence of marcasite are unlikely to undermine the photovoltaic performance of pyrite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photovoltaic Properties and Size-pH Phase Stability of Iron Disulfide from Density-Functional Theory

Despite its exceptional optical absorptivity, suitable band gap, and earth abundance, the low open-circuit voltage of pyrite FeS2 has remained the biggest challenge preventing its use in photovoltaic devices. Two widely-accepted causes are: (i) Fermi level pinning caused by intrinsic surface states that appear as gap states; (ii) presence of the polymorph marcasite. Based on density-functional ...

متن کامل

Evaluating structure selection in the hydrothermal growth of FeS2 pyrite and marcasite

While the ab initio prediction of the properties of solids and their optimization towards new proposed materials is becoming established, little predictive theory exists as to which metastable materials can be made and how, impeding their experimental realization. Here we propose a quasi-thermodynamic framework for predicting the hydrothermal synthetic accessibility of metastable materials and ...

متن کامل

Phase stabilities at a glance: stability diagrams of nickel dipnictides.

In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn2 (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the gen...

متن کامل

Oxidation of Pyrite and Marcasite by Thiobacillus ferrooxidans Bacteria

This paper reports results of studies on the influence of the crystallographic mineral structure on the process of pyrite and marcasite leaching. Kinetic studies show that the crystallographic structure of minerals like FeS2 type does not influence the efficiency of the process.

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011